SUSTAINABLE DEVELOPMENT MODELING METALLURGICAL ENTERPRISES
Abstract
The purpose of the article is to form a complex scientific and practical approach to modeling the ecological component of sustainable development. Methods. The article is based on general scientific and special methods of cognition. In the course of the research, general statistical methods of analysis of time series, 1 MPC method (simple econometric model), abstract logical analysis, systematization and combination method, deduction, induction, monographic and comparative method, method of theoretical generalization, graphical approach, moving average method, exponential modeling method; Holt and Brown models, Random Forest method. Results.The environmental component of the sustainable development of metallurgical enterprises was analyzed using general statistical methods of dynamic series analysis. In more detail, attention is focused on establishing the dependence between capital investments and the volume of emissions of harmful substances from stationary sources using method 1 of MNK (simple econometric model). The formation of the regression ecological and economic space of the Zaporizhzhya region is substantiated based on: abstract logical analysis, systematization and combination, deduction, induction, monographic and comparative method, theoretical generalization and graphic approach. Alternative scenarios (pessimistic, realistic, optimistic) of the formation of harmful emissions from stationary sources have been determined based on standard and modern special methods: the moving average method, exponentiation modeling using trend selection; Holt and Brown models (in the R programming language). The volume of emissions of polluting substances by stationary sources in the Zaporizhzhya region will be equal to: pessimistic scenario 170.48 thousand tons; realistic 151-155 thousand tons; optimistic 81.1 thousand tons The financial loss of income of metallurgical enterprises from emissions of stationary sources was determined using the example of PrJSC "Dniprospetsstal". The total financial losses of PJSC "Dniprospetsstal" as a result of the influence of destructive factors amount to 3-3.5% of sales revenue, which is more than 255 million hryvnias. We proposed a model of forecasting financial losses based on the Random Forest method, all stages of the forecast were implemented in the RStudio application program. For the processing of solid waste, metallurgical enterprises proposed to create a prototype of the Energy plant with the technology of high-speed, low-temperature pyrolysis of solid household waste. This industrial symbiosis will be able to completely solve the environmental problems of the city, because it is based on fundamentally new technological approaches. Scientific novelty. A comprehensive scientific and practical approach to modeling the environmental component of sustainable development has been formed, which is based on a systemic combination of sustainable development at the regional and micro level (business entity), which makes it possible to determine scenarios of environmental pollution by stationary sources, to calculate the financial losses of an individual entity project of the metallurgical sector from eco-destructive influence and realize the possibilities of greening. Practical significance. The conceptual provisions of the study, the analysis and forecasting carried out, and the formed scientific and practical approach to modeling the environmental component of sustainable development can be the basis for developing recommendations on providing reserves for increasing the income of metallurgical enterprises.
References
Амоша О. Пріоритети розвитку депресивних регіонів. Наукові праці НДФІ. 2012. № 3 (60). С. 50–56.
Андрушків Б. М. Інноваційні засоби формування концепції оцінювання сталого розвитку у системі: підприємство – галузь – регіон – держава (євроінтеграційні аспекти). Український журнал прикладної економіки. 2016. Т. 1. № 2. С. 6–17.
Білопольський М. Г., Турченко Д. К., Харченко В. А. Оцінка розвитку промислового виробництва. Вісник економічної науки України. 2014. № 2. С. 9–12.
Шапуров О. О. Стан інновацій та ефективні механізми розвитку металургійних підприємств. Вісник Одеського національного університету. Серія: «Економіка». 2018. Т. 23. Вип. 5 (70). С. 108–113.
Шапуров О. О. Складові механізму забезпечення інноваційного сталого розвитку промислових підприємств. Причорноморські економічні студії. 2020. Вип. 54. С. 261–272.
Guleryuz D. Forecasting outbreak of COVID-19 in Turkey; Comparison of Box–Jenkins, Brown’s exponential smoothing and long short-term memory models. Process Safety and Environmental Protection. 2021. Vol. 149. P. 927–935. DOI: https://doi.org/10.1016/j.psep.2021.03.032 (дата звернення: 08.11.2023).
Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning / D. Barrow et al. Expert Systems with Applications. 2020. Vol. 160. P. 113637.
Hyndman Rob J, Akram Md, Archibald Blyth C. «The Admissible Parameter Space for Exponential Smoothing Models». Annals of the Institute of Statistical Mathematics. 2008. vol.60 (2). P. 407–426.
Breiman, Leo. Random Forests. Machine Learning. 2001. vol.45 (1). P. 5–32.
Копач П. І. Аналіз процесів відходоутворення на виробництвах гірничо-металургійного регіону. Екологія і природокористування. 2012. № 15. С. 118–132.
Рудь І. Д., Савюк І. В., Самчук Л. М. Аналіз кількості утворених відходів машинобудування та металургії на території України. Вісник ТНТУ. Тернопіль : ТНТУ, 2015. Т. 79. № 3. С. 130–136.
Довга Т. М. Впровадження сучасних технологій рециклінгу твердих побутових відходів. Економіка та держава. 2011. № 8. С. 68–71.
Статистичний збірник «Довкілля України» URL: https://ukrstat.gov.ua/druk/publicat/kat_u/publnav_ser_u.htm (дата звернення: 08.11.2023).
Amosha O. (2012). Priorytety rozvytku depresyvnykh rehioniv [Development priorities of depressed regions]. Scientific works of NDFI, vol. 3(60), pp. 50–56. (in Ukrainian)
Andrushkiv B. M. (2016). Innovatsiini zasoby formuvannia kontseptsii otsiniuvannia staloho rozvytku u systemi: pidpryiemstvo – haluz – rehion – derzhava (ievrointehratsiini aspekty) [Innovative means of forming the concept of sustainable development assessment in the system: enterprise – industry – region – state (European integration aspects)]. Ukrainian Journal of Applied Economics, vol. 1, no. 2, pp. 6–17. (in Ukrainian)
Bilopolskyi M. G., Turchenko D. K., Kharchenko V. A. (2014). Otsinka rozvytku promyslovoho vyrobnytstva [Evaluation of the development of industrial production]. Herald of economic science of Ukraine, vol. 2. pp. 9–12. (in Ukrainian)
Shapurov O.O. (2018). Skladovi mekhanizmu zabezpechennia innovatsiinoho staloho rozvytku promyslovykh pidpryiemstv [Components of the mechanism of ensuring of innovative sustainable development of industrial enterprises]. Black Sea Economic Studies, vol. 54, pp. 261–272. (in Ukrainian)
Shapurov O.O. (2018). Stan innovatsii ta efektyvni mekhanizmy rozvytku metalurhiinykh pidpryiemstv [State of innovation and effective mechanisms of development of metallurgical enterprises]. Bulletin of Odessa National University. Series: "Economics", vol. 5, pp. 108–113. (in Ukrainian)
Guleryuz, D. (2021). Forecasting outbreak of COVID-19 in Turkey; Comparison of Box–Jenkins, Brown’s exponential smoothing and long short-term memory models. Process Safety and Environmental Protection, vol. 149, pp. 927–935. DOI: https://doi.org/10.1016/j.psep.2021.03.032
Barrow, D., Kourentzes, N., Sandberg, R., & Niklewski, J. (2020). Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning. Expert Systems with Applications, vol. 160, pp. 113637. DOI: https://doi.org/10.1016/j.eswa.2020.113637
Hyndman Rob J, Akram Md, Archibald Blyth C. (2008). «The Admissible Parameter Space for Exponential Smoothing Models». Annals of the Institute of Statistical Mathematics, vol. 60 (2), pp. 407–426.
Breiman, Leo (2001). Random Forests. Machine Learning, vol. 45 (1), pp. 5–32.
Kopach, P. I. (2012). Analiz protsesiv vidkhodoutvorennia na vyrobnytstvakh hirnycho-metalurhiinoho rehionu [Analysis of waste generation processes at industries of the mining and metallurgical region]. Ecology and nature management, vol. 15, pp. 118–132. (in Ukrainian)
Rud I. D., Savyuk I. V., Samchuk L. M. (2015). Analiz kilkosti utvorenykh vidkhodiv mashynobuduvannia ta metalurhii na terytorii Ukrainy [Analysis of the amount of machine-building and metallurgy waste generated on the territory of Ukraine]. Bulletin of TNTU, vol. 79, no. 3, pp. 130–136. (in Ukrainian)
Dovga T. M. (2011). Vprovadzhennia suchasnykh tekhnolohii retsyklinhu tverdykh pobutovykh vidkhodiv [Implementation of modern technologies of solid household waste recycling]. Economy and the state, vol. 8, pp. 68–71. (in Ukrainian)
Statystychnyi zbirnyk «Dovkillia Ukrainy» [Statistical collection «Environment of Ukraine»]. Available at: https://ukrstat.gov.ua/druk/publicat/kat_u/publnav_ser_u.htm (accessed: 08.11.2023).